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ALLOCATION OF JOBS TO

UNEQUALLY-CAPABLE PROCESSORS:

A PLANNING APPROACH

D. P. Gaver

P. A. Jacobs

K. Becker

S. Lawphongpanich

ABSTRACT

This paper addresses the problem in which jobs of different

types arrive at a system that consists of a collection of individual

and somewhat diverse processors. The processors differ in that

each may specialize in one job type, but may also do others. Job

types that are totally incompatible with a processor have an infinite

service on that processor, but degrees of incompatibility may exist,

and are modeled here. Using static queuing models, several

practical performance measures may be evaluated, and optimal

allocation of jobs to processors are obtained by solving linear and
nonlinear programming problems. To illustrate, several numerical

examples are provided. It is shown that jobs are not always most
advantageously assigned to their most expert servers.

1. Problem Formulation

Consider a service system whose individual service facilities (servers) are

unequal in their capacities to serve different job types. This means that, in some

sense, a job of type j is most expeditiously done by a server of type i = i(j), and

quantifiably less so by other servers. It may well be that a good start is achieved

by assigning jobs to those servers who require the least mean time to finish them,



but clearly this is not optimal if it tends to overload a few efficient servers and

leaves others idle. A good dynamic approach might be to allocate the excess

backlog of the efficient servers to others whenever that backlog is excessive. But

this requires constant monitoring of queue lengths, or possibly current elapsed

job service time. We do not investigate such dynamic rules here.

We propose to study a static queuing model that selects from the incoming

job traffic stream of jobs of classes ;' = 1, 2, . . ., / a subset that is directed to each of

the available servers: if a job is of type j it goes to server type i with probability

a». The procedure is based on classical M/G/l queuing theory, and requires

mathematical programming in order to optimize the allocation from the

perspective of either servers or jobs (customers). The allocation can be both

deterministic or randomized. In the deterministic case, all jobs of one type are

assigned to a single server. For the randomized allocation, if a job of type j

arrives, it can be assigned to server i with probability a«.

2. Model

The system studied is made up of J > 1 single servers with different

capabilities. The system is confronted by a Poisson (rate A) rate of demand of

jobs, but of different job types: with independent probability pj an arrival is a job

of type ;',;'e (1, 2, ...,/). The different capabilities of servers to handle (serve) jobs

of different types is reflected in their service times: the service time of job / on

server i, denoted by Su, may tend to vary systematically with i for any of many

possible reasons, one being each of training or recent experience by i with job

type /. In fact, for some job types f and some servers /', Sff is effectively infinite if

the servers in question have no capability to handle those particular jobs, so

E[Sj'i'] = co; this is a case of total incompatibility, and certainly exists in many

practical settings. On the other hand it may be necessary to allocate jobs to



servers with which they are somewhat incompatible in order to avoid

overloading the more compatible servers. It is to be expected that this

phenomenon may tend to occur more extensively as traffic intensity increases,

e.g. if A increases, in which case a good planning policy choice of aji may well

stave off disaster: the need to hastily add servers or reject jobs.

To investigate the effect of cross-assignment we introduce a static set of

assignment probabilities a». Thus if a type-/ job arrives in (t, t + dt) with

probability tyjdt + o(dt), it is assigned to server i with probability ap. We think of

aji as a decision variable to be determined so as to optimize some measure of

system performance. Total expected delay to all arriving jobs is one such

measure, but the delays of some jobs may be more undesirable than those of

others, in which case a total weighted expected delay can be studied. Note that,

for job type ;', we can select aji to be any real positive (actually non-negative)

I

number such that 2^0« = 1, in which case a randomization device is needed to

i=l

allocate an arrival of type ; to its server, i.e., «» represents a randomized job

allocation. A more easily implemented approach would be to choose a single

"best" /-value, /(;') for each /', and set

\ if i = i(j)

otherwise.

This approach is a deterministic allocation of jobs since it sends all jobs of type j

to server /(/)• Later, it is shown that, although easier to implement, deterministic

job allocation may not be desirable in practice.

Both deterministic and randomized job allocations provide a simple

independent Poisson stream of jobs with independent service times to the

individual servers. Moreover, if jobs are treated in arrival order (first-come, first-

a
ji = <



served) at all servers, the stationary delay experienced at each of the J servers can

be calculated using known results, e.g. the Pollaczek-Khintchine-Kendall

formula. Parenthetically, static priority rules can also be followed, and formulas

for long-run results are already available, but this extension is postponed.

Clearly the arrival rate at server i of all job types is

/

h ~ ^Pja
ji
= %Pi * = 1, 2, . . ., J

7=1

(2.1)

and by standard results Xi is the rate of a Poisson process independent of those

prevailing for other servers (* z). Now consider the effective service time, Si, of

jobs arriving at server i. A new job is of type ; with probability pp and if it is

dispatched to server z it experiences service time Sji, so

pjttu
Sj = Sji with probability _

1

Pi

Moments of Sj are calculated by conditioning, e.g.

/

(2.2)

E
[
si]=

y

L E
[

sji]pjaji /Pi
;'=1

Also the Laplace transform is

-9Si

]

;=i

;=i

9
p Pjaji Pi

(2.3)

(2.4)

'f** Pjaji Pi (2.5)

This latter becomes useful in case one wishes to use the probability of a long wait

or delay as an optimization criterion; see Gaver and Jacobs (1988).
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3. Performance Measures

Several service-system/queuing performance measures are relevant to overall

system performance and can be formally evaluated. Then mathematical

programming techniques can be applied to obtain optimal {a«J values.

3.1 Traffic Intensity Parameters and Associated Optimization Problems

r 1

J

It has already been stated that A,- = Ap;, and that E S- = ^PjdjjE
l

S
ni

1

Pi, so

the f
th server's traffic intensity is

/

Pi = ^E[Si] = XPiE[
Si\ = ^

y

LPja
ji
E

7=1

s
n

(3.1)

Using (3.1), several optimization problems can be formulated from the

perspective of the servers. The first problem is to find a job allocation that

minimizes a linearly weighted combination of the traffic intensities, i.e., solve the

following optimization problem.

PI:

/ /

min ^CjJjPpjiE
a

ji ;=i y=l

subject to ^%PfpASji ]
< lVz = 1,. . .1 (3.2)

t«/f = l V; = 1,...J

f=l

an >0 Vf = l,..J; ; = !,.../

(3.3)

(3.4)

where the first constraint, (3.2), restricts the traffic intensity for each server i to be

less than one in order to ensure the existence of long-run stationary delays. The

second constraint ensures that the probability that job type ;' is assigned to server



i sums to one. The parameter a in the objective function is the weight for the

traffic intensity of server i. When a = 1, the objective function is equivalent to

minimizing the average traffic intensity of the / servers.

When X is sufficiently small, allocation a« satisfying constraints (3.3) and (3.4)

may automatically satisfy constraint (3.2) and it may be eliminated. In this case,

problem PI has a simple solution. By interchanging the two summations, the

objective function for PI can be equivalently written as

/ I

min XP/Z c^;£

;=1 i=1

S
P

For each job;', let i(j) = arg mm[cjE[Sji\ : i = 1, ... /} and allocate jobs as follows:

1 if i = i
(/)

a
ji = < V; = i,.../. (3.5)

otherwise

The allocation in (3.5) clearly satisfies (3.3) and (3.4). Moreover, it is also assumed

to satisfy (3.4) when X is sufficiently small. By construction, z(;) is the least cost

server and, when q = 1 for all i, i (/) is the "best" or the most qualified server for

job /. Since a.u assigns job / to its least cost server, the corresponding objective

function value must also be minimal. So the randomized and deterministic job

allocations are the same when X is sufficiently small.

When X is too large, the allocation in (3.5) may not be feasible. In fact, there

may not exist any feasible deterministic job allocation and the probabilistic job

allocation may be the only choice. In which case, it is still optimal to assign the

major proportion of job / to server /(;'). To minimize total cost, it is only

necessary to divert just enough of jobs ; to other servers to ensure that constraint

(3.2) is satisfied. In practice, this may not be acceptable since server /(/) is likely



to have a traffic intensity (loading) close to one. To prevent this, several

alternative optimization models for probabilistic job allocation are described

below.

The first model minimizes the weighted sum of squared intensity of each

server and can be stated as follows:

f r \2

P2: min£cr
J

subject to constraints (3.2), (3.3), and (3.4).

The squared objective function of P2 penalizes servers with higher traffic

intensity more than those with lower intensities. P2 can be solved as a quadratic

programming problem (see, e.g., Bazarra, Sherali and Shetty, 1993). Since the

objective function for P2 is convex, the solution is guaranteed to be globally

optimal.

The second model tends to equalize the traffic intensity among all servers by

minimizing the maximum intensity, i.e.,

P3: minmax<
i

J

^Pja
ji
E

[

S
ji\

H
subject to constraints (3.2), (3.3), and (3.4).

The objective function for P3 is piecewise linear and convex. Thus, P3 is a

nonlinear programming problem. However, it can be converted into a linear

problem by introducing an auxiliary variable z and additional constraints to

calculate the maximum traffic intensity as follows:



P4: minz

subject to constraints (3.2), (3.3), (3.4), and

/ . ,

^Lvfji^ji\- Z Vi = l,...l (3.6)

An optimal solution to P4 tends to assign jobs to servers so that their intensities

all equal z*, the optimal value of z.

Replacing constraint (3.4) with the following constraint translates randomized

job allocation problems P2-P4 into deterministic ones.

«
;I
e{0,l} Vi = l,...J; ; = 1,.../. (3.7)

Constraint (3.7) simply restricts a« to be either or 1 and the resulting problems

become integer programming problems, a more difficult class of problems to

solve. However, if the optimal allocation differs from the allocation in (3.5), then

some jobs may not be given to the most qualified servers and the optimal

allocation may be hard to accept in practice. For the remainder, we focus on the

randomized job allocation problems with a more operationally meaningful

objective (penalty) function based on expected or mean job delay, or mean non-

linearly-length-penalized job delay.

3.2 Optimization of Mean Functions of Total Job Delay

The Pollaczek-Khintchine-Kendall formula provides the expected long-run

waiting time E[W], at an M/G/l system, so for server i we get

E[T^] = AiE[sf].^l^ ifp
f
<l. (3.8)

A type-;' job arrives in (t, t + dt) with probability Xpjdt + o(dt). With probability an

it is then assigned to server i where it experiences a total expected delay in

system equal to E[Wi\ + E[Sjj\. Thus the total expected delay for a job of type; is

8



z'=l

(3.9)

this becomes infinite if any p% > 1. The total expected long-run weighted delay (per

unit time) is

/

/

(3.10)

i

i^(e[^]+4s
>( ])

From the perspective of jobs (or customers), it is natural to find a randomized job

allocation that minimizes D(a) by solving the following nonlinear programming

problem:

P5:

/

nun 2^psdj

H
I«/i(E[^]+4%])

(3.11)

subject to constraints (3.2), (3.3), and (3.4)

where dj is the weight for the delay of job /. When dj = \, the objective function of

P5 is equivalent to minimizing the average delay of all / jobs. Alternately, the

following problem minimizes the maximum expected delay:

I

P6: minmax Xfl;f
(E[W;] + E[s

;f
])

subject to constraints (3.2), (3.3), and (3.4).

(3.12)

3.3 Mean Non Linear Delay Penalty

Suppose it is important that the penalty for job delays be more stringent for

long jobs, and in a manner that the (linear) long-run expectation of total delay

does not reflect adequately. One such penalty parameterization is exponential:



exact penalty E
e^Wj+Sji)

where 6{ > 0. The value of 9j is a decision maker's

choice. Classical M/G/l theory says that the limiting transform is

L0,w,.i_ 1-Pi

1 n<
E\ediSi ]-l

1 Pi
8iE[Si]

J

(3.13)

provided the denominator is positive. To satisfy this requirement, the rate of

input to server i must be, in general, smaller than what is allowed by the

expected long-run waiting time formula in (3.8). Of course,

ASi
J

=
y

Lpja
ji
E

7=1

fiSji

7-1

(3.14)

can quickly grow large, or become formally infinite, if any assignments of job

type f (denoting members of a subset of all jobs) are submitted to server i.

Analogous to P5, the problem of minimize weighted penalty can be written as

follows:

P7 rrun^pjdAx.ajiE
;=1 U=l

A-w,
e '

subject to constraints (3.2), (3.3), (3.4), and

0< Pi

ASi -1

eftSi]
<1 V/ = 1,2,..J.

e
e

l
w

l

(3.15)

in theThe additional constraint is to ensure that the expression for E

objective function is well defined. As before, when dj-1, P7 simply minimizes

the average delay penalty for all / jobs. Similarly, the problem of minimizing the

maximum penalty can be written as

10



P8
i U=l

AWiMe9^]

subject to the constraints of (3.2), (3.3), (3.4), and (3.15).

4. Incompatibility Models

Among all possible job to server assignments, it is convenient to stipulate that

the assignment of job / to server ; (or, equivalently, job i to server i) is the most

compatible, i.e., E[Su] < E[Sjj] and E Sj

ibility models that fit this stipulation.

<E
'n

for j * i. Below are two incompat-

4.1 Proportionality Model

Suppose we represent incompatibility simply as follows: for fc«> 1, we

assume Sy; = kjiSi, so

4S
;;]

= ^E[S,7 ]
(4.1a)

m kji E (4.1b)

for V/ ^ i. Clearly the inequalities noted above hold, and the greater k is made the

more flagrant is the incompatibility.

4.2 Random Interruption Model

An alternative and physically plausible model is as follows. Let vu denote a

Poisson rate of interruptions incurred by a job of type / when processed on server

type i. These interruptions occur when the server must consult for advice, look

for necessary materials, or rectify a breakdown that occurs. It is assumed here

that the job is not displaced from the server's attention (set aside) during the

interruption, so no other jobs may be done during the interruption. Analysis of a

set-aside option will be conducted later. Let I« denote the random duration of an

11



interruption; successive interruptions are independent. Let Su be the effective

service time for server i to complete a job of type j, including the interruptions

that occur. Then

N{SU )

e=\

where, given Su, N(Su) is Poisson (vjiSu).

By straightforward conditioning we find

(4.2)

Elsf^^Sail + Vji^Iji]) (4.3)

w = E[sg](l + vn
E[l

nf +v^S^li (4.4)

5. Numerical Examples

The problems presented above, PI, P2, P4, P5, P6, P7, and P8 were imple-

mented and solved using the General Algebraic Modeling System (GAMS)

developed by Brooke, Kendrick and Meeraus (1992). (Recall that P4 is linear

version of P3.) Among all the constraints in these problems, constraints (3.2) and

(3.15) cannot be implemented on a finite precision computer. Our implemen-

tation replaces equations (3.2) and (3.15) by the following:

/

X2
dpj

a
ji
l[s

ji
]<L0.99 Vz = l,...I.

7=1

.01 < Pi

AS: -1

oft*]
<.99.

(5.1)

(5.2)

For PI, P2, P4, P5, and P6, our example assumes that the first and second

moments for service time are determined by the random interruption model.

12



Results for the proportionality model are similar. The data for our example are as

follows:

i) 1 = 7 = 6,

ii) The weight for the traffic intensity at server i, c\, equals 1 for all i,

iii) The cost of delay for job j, dj, equals 1 for all /,

iv) The probability of an incoming job being of type;, pj , is as follows:

Job 1 2 3 4 5 6

P) 0.29 0.24 0.19 0.14 0.10 0.04

v) Vji = Round( 1/(1,4)), where U(a, b) is a Uniform random variable with

parameters a and b, and Round( ) rounds a number to the nearest

integer.

vi) E[Iji] = 11(0.5, 1.5) and E lj
{

= 2E[/;I ]
2

.

vii) E[Sa] = 1/(0.5, 1.0) and e[s?1 = 2E[Sff]2 .

Table 1 shows the resulting matrices for the first and second moments generated

based on the data from v, vi and vii.

Table 1: The first and second moments of the time server i takes to perform job ;'.

• E[Sji]

Serverl Server2 Server3 Server4 Servers Server6
Jobl 0.5364 1.3056 3.8214 2.6083 2.2060 1.3083
Job2 1.3794 0.5878 2.4318 5.1551 1.2537 2.0121
Job3 2.4959 1.6771 0.7628 3.7252 1.5549 0.9507
Job4 1.6340 1.2613 2.3811 0.8751 2.8333 1.3421
Job5 1.7820 2.0643 1.6229 1.5611 0.5891 1.4267
Job6 1.5059 1.9296 3.1550 2.2705 2.1116 0.5171

E

Serverl Server2 Server3 Server4 Server5 Server6
Jobl 0.5754 4.2853 35.3372 15.8944 14.1712 4.6341
Job2 5.1302 0.6911 15.4788 63.6172 4.6431 10.9792
Job3 16.0385 6.9712 1.1638 32.3951 5.8913 2.5347
Job4 6.8372 4.7252 14.7727 1.5316 21.7556 4.9190
Job5 9.2434 12.2305 7.2066 5.9493 0.6940 5.1381
Job 6 5.7039 10.5089 24.9085 11.7939 12.8533 0.5347

13



Using the above data, the maximum job arrival rate, Amax/ can be obtained by

solving the following linear programming problem:

P9: ^max =max X

subject to constraints (3.3), (3.4), and

J
r i

iLPmSji]* 1 Vi = l,.../. (5.3)

This problem yields Amax = 8.23. Corresponding to this Xmax, there is also a

feasible allocation, au, such that

^x Z^/ifjiJ = 1 Vi = 1,.../. (5.4)

M
Table 2 summarizes the results for three different arrival rates: low (0.75AmaX)/

medium (0.85Amax) and high (0.95Amax). The first two allocations mimimize the

sum (PI) and the squared traffic intensities (P2) yield higher delays than the

other three allocations. On the other hand, PI and P2 produce smaller traffic

intensities on the average. However, the maximum intensity for PI and P2 for all

three arrival rates are close to 1. Except for the low arrival rate, the maximum

traffic intensity for both PI and P2 is 0.99, the maximum allowed by constraint

(5.1). This may not be desirable in practice.

The last three allocations minimize the maximum traffic intensity (P4),

weighted delays (P5) and maximum delay (P6), have similar average intensity.

Since minimizing the maximum traffic intensity does not directly take into

account the delay, P4 generates slightly higher job delays than the other two.

Observe that the traffic intensity for P4 is the same for every server. Similarly, the

expected delay for every job is the same for problem P6.

14



Table 2: Summary of results from various optimization problems

MIN E [Delay]
AVE E [Delay]
MAX E [Delay]

MIN INTENS
AVE INTENS
MAX INTENS

Low Arrival Rate: X - 0.75^ax

PI P2 P4 P5 P6
Minimize Minimize Minimize Minimize Minimize
Sum Traffic Sq. Traffic Max Traffic Weighted Max Delay
Intensity Intensity Intensity Delay

MIN E [Delay] 0.5927 1.0592 2.7176 2.0935 3.0698
AVE E [Delay] 5.0440 4.2503 3.6594 2.9473 3.0698
MAX E [Delay] 13.3894 13.3894 5.0153 3.5874 3.0698

MIN INTENS 0.1276 0.4002 0.7500 0.5850 0.6353
AVE INTENS 0.6620 0.6774 0.7500 0.7218 0.7304
MAX INTENS 0.9599 0.9599 0.7500 0.8183 0.8170

Medium Arrival Rate: X = 0.85^ax

PI P2 P4 P5 P6
Minimize Minimize Minimize Minimize Minimize
Sum Traffic Sq. Traffic Max Traffic Weighted Max Delay
Intensity Intensity Intensity Delay

MIN E [Delay] 1.0018 1.1739 4.5287 3.8327 5.2134
AVE E [Delay] 31.8809 13.4553 6.2890 5.1513 5.2134
MAX E [Delay] 74.5428 49.1424 9.0138 6.1985 5.2134

MIN INTENS 0.4097 0.4535 0.8500 0.7383 0.7608
AVE INTENS 0.7748 0.7861 0.8500 0.8316 0.8357
MAX INTENS 0.9900 0.9900 0.8500 0.8930 0.8936

High Arrival Rate: X = 0.95^ax

pi
Minimize
Sum Traffic
Intensity

2.9863
33.9351
68.2769

0.7010
0.9199
0.9900

P2 P4
Minimize Minimize
Sq. Traffic Max Traffic
Intensity Intensity

2.9863 13.5844
33.9351 19.4372
68.2769 29.0061

0.7010
0.9199
0.9900

0.9500
0.9500
0.9500

P5
Minimize
Weighted

Delay
12.2416
16.2206
20.6084

0.9118
0.9437
0.9640

P6
Minimize
Max Delay

16.0495
16.0495
16.0495

0.9124
0.9442
0.9661

It is interesting to note that problems P5 and P6 which minimize functions of

job delays produce allocations with traffic intensities similar to those generated

by P4 which minimizes the maximum intensity. This similarity is probably due

to the fact that, from (3.8), lower traffic intensity implies shorter waiting time

which, in turn, implies shorter delay via (3.9). Moreover, this similarity illustrates

that planning from the two perspectives, servers or jobs (customers), does not

have to always be conflicting.

15



Problem P4, minimizing the maximum traffic intensity, tends to equalize the

intensity at all servers. In Table 2, the minimum, average, and maximum values

of traffic intensity for P4 all equal , if X = aAmax - In fact, the solution to problem

P9, i.e., ax, also solves P4 because au is a feasible allocation and multiplying (5.3)

by a yields the following

/ .

;=i

/

^XW*E % =a V2 = l,...,7.

7=1

So, the allocation a# produces the same traffic intensity, «, at all servers. Since a

is the maximum intensity, au must be optimal to P4 also.

Unlike the other problems, the distribution for service times must be specified

for problems P7 and P8. To simplify our illustration, replace v to vii with the

following:

viii) The service time Sa has a gamma distribution with parameters oq and

Pi, and

E[%] = A7«f a*d E[s|] = (ft
2 + #)/«?, and

ix) The service time S« has a gamma distribution with parameters a,- and

kjiPi, and

ElSjil^kjiPi/ai and E S?- = (^-ft) +^A «

The above assumptions is similar to the proportionality model, in that equation

(4.1a) holds. However, equation (4.1b) does not and the following holds instead:

<kj
{
E Vj*i.
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Moreover,

Pity 1-
Q-Var

P

-E[s,r

i i

VaASji

Vz and ;'.

For our example,

1) oh = 1 and ft = 2 V i

••=1^1 + 12) fy= « +1
>

v
;
Vf -

Determining the value of Amax now requires solving problem P9 with the

addition of the following constraint:

Q< Pi

-1

OiE[Si]

<1, Vz. (5.5)

Since (5.5) depends on 6, improper choice for $ may render problems P7 and P8

infeasible. Figure 1 below displays a graph of Amax as a function of 6 under the

assumption that 0,- = 6 for all i. So, the choice of 6 limits the application of

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 1: A graph of AmaX as a function of under the assumption that
Z

- = 6 for all i.
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problem P7 and P8. Certainly, when the arrival rate is 0.7, it is not possible to

choose 6 to be 1 and vice versa. Tables 3 and 4 compare the results with 6 = 0.7

for two pairs of problems, P5 & P7 and P6 & P8, respectively. In Table 3,

minimizing weighted job delays (P5) and job penalties (P7) generate similar job

delays for all three arrival rates. On the other hand, only the job penalties for low

arrival rate are similar. At the high arrival rate, the infinite penalties for jobs 1

and 6 under P5 indicate that the penalty function is undefined, i.e., constraint

(3.15) is not satisfied. Problems P6 and P8 display a similar behavior in Table 4.

Table 3: Comparing job delays and penalties for problems P5 and P7.

Low Arrival Rate: A =: 0.75^
P7: Minimize P5 : Minimize
Weighted Penalty Weighted Delay
DELAY PENALTY DELAY PENALTY

Job 1 1.1957 4.3649 1.2562 6.0654
Job 2 1.0157 3.4013 1.0504 3.7571
Job 3 0.9296 2.8850 0.8663 2.5424
Job 4 0.8693 2.7167 0.7537 2.1365
Job 5 0.8134 2.5799 0.7008 2.0217
Job 6 0.7664 2.6051 0.7668 2.6076

Ave 1.0008 3.3728 0.9873 3.7493

Medium Arrival Rate: X = 0.85^^

P7: Minimize P5: Minimize
Weighted Penalty Weighted Delay
DELAY PENALTY DELAY PENALTY

Job 1 1.3395 6.4635 1.4309 14.1940
Job 2 1.1525 4.9695 1.1788 5.4984
Job 3 1.0767 4.1320 0.9700 3.1213
Job 4 1.0059 3.8486 0.8595 2.5732
Job 5 0.9456 3.7056 0.8320 2.6513
Job 6 0.8858 3.8450 0.9493 5.1916

Ave 1.1404 4.9153 1.1237 6.8620

High Arrival Rate: X -= 0.95-^^

P7: Minimize P5: Minimize
Weighted Penalty Weighted Delay
DELAY PENALTY DELAY PENALTY

Job 1 1.5106 15.5540 1.6392 OO

Job 2 1.3238 11.5910 1.3401 14.0168
Job 3 1.2673 9.3830 1.1036 4.4200
Job 4 1.1917 8.8212 0.9955 3.4966
Job 5 1.1185 8.6550 0.9977 4.3668
Job 6 1.0326 9.2758 1.1772 OO

Ave 1.3166 11.5468 1.2929 N/A
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Table 4: Comparing job delays and penalties for problems P6 and P8.

Low Arrival Rate: X - O^Amax

P8: Minimize P6: Minimize
Maximum Penalty Maximum Delay
DELAY PENALTY DELAY PENALTY

Job 1 1.1188 3.7831 1.0998 3.8200
Job 2 1.0730 3.7831 1.0998 3.8304
Job 3 1.0803 3.7831 1.0998 3.7653
Job 4 1.0649 3.7831 1.0998 4.0381
Job 5 1.0209 3.7831 1.0998 4.0422
Job 6 0.8637 3.0756 1.0025 3.8652

Ave 1.0729 3.7548 1.0959 3.8667

Medium Arrival Rate:: X = 0.85^ax

P8: Minimize P6: Minimize
Maximum Penalty Maximum Delay
DELAY PENALTY DELAY PENALTY

Job 1 1.2847 5.6349 1.2438 5.4339
Job 2 1.2045 5.6349 1.2438 6.3660
Job 3 1.1525 5.6349 1.2438 8.7200
Job 4 1.0736 4.9570 1.2438 12.7694
Job 5 1.1845 5.6349 1.2438 13.7092
Job 6 1.0599 5.2289 1.2438 21.1060

Ave 1.1918 5.5237 1.2438 8.7634

High Arrival Rate: X = 0.95^^

P8: Minimize P6: Minimize
Maximum Penalty Maximum Delay
DELAY PENALTY DELAY PENALTY

Job 1 1.4910 13.1304 1.4212 15.6351
Job 2 1.3354 13.1304 1.4212 6.7326
Job 3 1.3079 13.1304 1.4212 15.5092
Job 4 1.2246 11.9743 1.4212 1.2211
Job 5 1.1317 9.6943 1.4212 OO

Job 6 1.0162 7.9914 1.2959 OO

Ave 1.3267 12.4194 1.4162 N/A

6. Application

One application of the optimization problems is in quantifying the benefit of

additional training. In all of the above examples, ps = 0.04. So, there are not many

jobs of type 6 in the system. Therefore, server 6, who is the expert for job type 6,

has to process other types of jobs in order to, e.g., minimize the maximum

expected delay among all 6 job types, (problem P6). In order to improve this

performance measure, it is logical to train server 6 to become an expert at

processing another job besides job 6. Assume that, if server 6 is trained to process

job i, then

19



= EE[S6f] = E[Sg] and E[s|
f

By resolving problem P6 with the first two moments of its service times suitably

modified, the training benefit for server 6 can be measured quantitatively. Using

data from the interruption model above (i.e., i - vii) and high arrival rate, Figure

2 displays the maximum delay for each training alternative.
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Figure 2: Maximum Job Delay vs. Training Alternatives for Server 6

As expected, it is best to train server 6 to process job 1, for doing so decreases the

maximum job delay by the largest amount.

In general, it is also possible to formulate an optimization problem for

assigning servers to training programs for a given budget constraint.
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